

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)

S. No.	Board of Study	Subject Code	Subject		Periods per Week		Scheme of Examination Theory / Practical		Total Marks	Credit L+(T+P)/2	
					Т	Р	ESE	СТ	ТА		
1	Mech. Engg.	ME225301	Industrial Design & Ergonomics	3	1	-	100	20	20	140	4
2	Mech. Engg	ME225302	Elective-III	3	1	-	100	20	20	140	4
3	Mech. Engg.	ME225391	Preliminary Work on Dissertation	-	-	28	100	-	100	300	14
4	Mech. Engg	ME225392	Seminar based on Dissertation	-	-	4	-	-	20	20	2
Total				6	2	32	300	40	160	500	24

3rd Semester

L-Lecture	T- Tutorial
L-Lecture	I - Tutorial

P-Practical,

ESE- End Semester Exam

CT- Class Test TA- Teacher's Assessment

Table-III

PROFESSIONAL ELECTIVE II					
S.No. Board of Study Subject Code Subject					
1	Mech. Engg.	ME225321	Flexible Manufacturing System		
2	Mech. Engg.	ME225322	Hybrid Manufacturing		
3	Mech. Engg.	ME225323	Machine Vision		

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)3rd Semester

Subject Code ME225301	INDUSTRIAL DESIGN AND ERGONOMICS	L = 2	T = 0	P = 0	Credits = 2
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

	Course Objective		Course Outcomes
1.	To explain the general principles that governs the	С	In successful completion of the course, the student
	interaction of humans in their working	W	vill be able to:
	environment.	1.	To explain the general principles that governs the
2.	To improve improving worker performance and safety.		interaction of humans in their working environment
3.	To know about the environmental conditions	2.	To improve improving worker performance and
	in the industry.		safety.
4.	To know about bio thermodynamics and	3.	To know about the environmental conditions in the
	Bioenergetics.		industry.
5.	To know about the human factors in industrial	4.	To know about bio thermodynamics and
	aspects.		bioenergetics
		5.	To know about the human factors in industrial
			aspects

Unit-I

Introduction: An approach to industrial design -elements of design structure for industrial design in engineering application in modern manufacturing systems.

Ergonomics and Industrial Design: Introduction -general approach to the man- machine relationshipworkstation design-working position.

Unit-II

Control and Displays: Shapes and sizes of various controls and displays-multiple, displays and control situations - design of major controls in automobiles, machine tools etc

Ergonomics and Production: ergonomics and product design -ergonomics in automated systems- expert systems for ergonomic design. Anthropometric data and its applications in ergonomic, design-limitations of anthropometric data use of computerized database.

Unit-III

Visual Effects of Line and Form: The mechanics of seeing- psychology of seeing general influences of line and form.

Colour: Colour and light -colour and objects- colour and the eye -colour consistency- colour termsreactions to colour and colour continuation -colour on engineering equipments.

Unit- IV

Aesthetic Concepts: Concept of unity- concept of order with variety -concept of purpose style and

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO1

CO2

CO4

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)3rd Semester

environment Aesthetic expressions. Style-components of style- house style, observation style in capital goods, case study.

Unit- V

CO5

Industrial Design in Practice: General Design -specifying design equipment- rating the importance of industrial design -industrial design in the design process.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Industrial Design for Engineers	Mayall W.H.		London Hiffee books
				Ltd1988.
2	Applied Ergonomics Hand Book	Brain Shakel		Butterworth scientific.
		(Edited)		London -1988.

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1	Introduction to Ergonomics	P. C. Bridger		McGraw Hill
1		K. C. Dhugei	-	Publications - 1995
ſ	Human Factor Engineering	Sanders &	6 th adition	McGraw Hill
Z		McCormick	o ui edition	Publications, 2002.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)3rd Semester

Subject Code ME225321	FLEXIBLE MANUFACTURING SYSTEMS	L = 2	T = 0	P = 0	Credits = 2
Evolution Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

	Course Objective		Course Outcomes
1	. To develop the need and better understanding of conventional and non-conventional manufacturing	O w	On successful completion of the course, the student vill be able to:
	process.	1.	Apply the concepts of PPC and GT to the
2	. To develop skills in fundamental principle of		development of FMS.
	Abrasive jet machining and thermal metal removing process.	2.	Discuss the planning and scheduling methods used in manufacturing systems.
3	. To expose the students to different processes used in Electro Chemical and Chemical Processes.	3.	Identify various workstations, system support equipment.
4	. To developed the skill and knowledge the	4.	Identify hardware and software components of EMS
	their machining characteristics.	5.	Summarize the concepts of modern
5	. To developed the knowledge of formation of ion		manufacturing such as JIT, supply chain
	beam and this application and various high		management and lean manufacturing etc.
Î.	velocity forming process.		

Unit-I

CO1

Introduction: Introduction to manufacturing system, different type of manufacturing system, volume variety relationship for understanding manufacturing system.

Flexible Manufacturing System: Components of an FMS, types of system, where to apply FMS technology, FMS work stations. Material handling and storage system: Functions of the handling system, FMS layout configuration, Material handling equipment.

Computer control system: Computer function, FMS data file, system reports planning the FMS, analysis method for FMS, application and benefits.

Unit-II

Distributed data processing in FMS: DBMS and their applications in CAD/CAM and FMS distributed systems in FMS –Integration of CAD and CAM - Part programming in FMS, tool data base - Clamping devices and fixtures data base.

Conveyors: AGVs – features of industrial robots - robot cell design and control- AS/RS.

Unit-III

Group Technology: Part families, part classification and coding. Types of classification and coding system, Machine cell design: The composite part concept, types of cell design. Determining the best machine arrangement, benefits of group technology.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO2

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)3rd Semester

Just In Time and Lean Production: Lean Production and Waste in Manufacturing, just in time production system, automation, work involvement.

Unit- IV

CO4

Production Planning and control systems: Aggregate Production Planning and the master production schedule, Material Requirements and Planning, capacity planning, shop floor control, inventory control, and extensions of MRP.

Unit- V

CO5

CMM types: contact and non-contact inspection principles - programming and operation-in cycle gauging.

Text Books:

S. No.	Title	Authors	Edition	Publisher		
1	Flexible Manufacturing,	David J. Parrish	-	Butterworth-		
				Heinemann, 1990		
2	Automation Production systems,	Mikell P	-	Prentice Hall, 1987		
	Computer Integrated	Groover				
	Manufacturing					
Reference Books:						
S. No.	Title	Authors	Edition	Publisher		
1	The design and operation of FMS	Paul Ranky	-	IFS publication, 1983.		

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)3rd Semester

Subject Code ME225322HYBRID MANUFACTURING		L = 2	T = 0	P = 0	Credits = 2
Englished Calenda	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

	Course Objective		Course Outcomes
1.	Learn what Advanced/Additive manufacturing (AM) is and	On	successful completion of the
	understand why it has become one of the most important	cou	rse, the student will be able to:
	technology trends in decades for product development and	1.	Understand the working
	innovation.		principle and process
2.	Demonstrate comprehensive knowledge of the broad range of AM		parameters of AM processes
	processes, devices, capabilities and materials that are available.	2.	Explore the applications of AM
3.	Understand the various software tools, processes and techniques		processes in various fields
	that enable advanced/additive manufacturing and personal	3.	Select the suitable material and
	fabrication.		process for fabricating a given
4.	Learn how to create physical objects that satisfy product		product
	development/prototyping requirements, using advanced/additive	4.	Apply the knowledge in
	manufacturing devices and processes.		Material science in Additive
5.	Articulate the various tradeoffs that must be made in selecting		Manufacturing components
	advanced/additive manufacturing processes, devices and materials	5.	Design and develop a product
	to suit particular product requirements.		for AM Process.

Unit-I

Hybrid Machining Processes: Introduction, Needs of Hybridization of the machining process, Challenges and feasibility of process.

Unit-II

Chemical and Electro-chemical Type Material Removal Processes: Principle, working advantages, disadvantages and applications of Electrochemical, Chemical machining, Economy aspects of ECM, Electro-chemical deburring and honing.

Mechanical and Thermal interaction, Electrical Hybrid Machining Processes(ECDM, ECAM), Electrical Discharge Machining with Ultrasonic Assistance (EDMUS)

Unit-III

Abrasive Hybrid Machining (AHM) Processes, Abrasive Electrochemical Machining processes, Electrochemical assistance of Ultrasonic Machining (USMEC), Abrasive Electrical Discharge Grinding

Unit- IV

Laser Assisted Micromachining: Laser-assisted etching (LAE), Electrochemical Micromaching with Laser Assistance (ECML),

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO1

CO2

g

CO4

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)3rd Semester

Unit- V **CO5** Methods of Metal Deposition: Thermal Spray Coating: Vapor Deposition Chemical Vapor Deposition

Text Books:						
S. No.	Title	Authors	Edition	Publisher		
1	Advance Machining Processes	V.K. Jain	-	New Age		
2	Modern Machining Processes	P.C. Pandey	-	New Age		
3	Manufacturing Processes	Kalpak Jian	-	Tata McGraw-Hill		
				International		

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1	Manufacturing Science	Amitabh Gosh and A.K. Mallik,	1985	Affiliated East-West Press Pvt. Ltd.
2	Manufacturing Processes	Degarmo	-	-

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)3rd Semester

Subject CodeMACHINE VISIONME225323MACHINE VISION		L = 2	T = 0	P = 0	Credits = 2
Englanding Calory	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

	Course Objective		Course Outcomes
1.	To know about the principles and applications of	On	successful completion of the course, the student
	vision system in modern manufacturing	wi	ll be able to:
	environment.	1.	Knowledge or gadgets of vision systems.
2.	To learn about the algorithms in vision	2.	Ability to understand the image capturing and
3.	To know about the recognition of object.		processing techniques.
4.	To be familiar about the applications regarding vision.	3.	Ability to apply the vision system in other machines.
5.	To know about the components used for vision.	4.	Knowledge for recognizing the objects.
		5.	Knowledge in application of vision and image processing in robot operations.

Unit-I

Image capture and digitization; Image transforms; Digital Fourier transform; Fast Fourier transform; Other transforms; Convolution.

Unit-II

Image enhancement; Spatial methods; Frequency domain methods; Image restoration.

Unit-III

Geometric transformation; Image compression; error free and lossy compression; Edge detection; Hough transform; Region based segmentation; image feature / region representation and descriptors; Morphological operators.

Unit- IV

Feature based matching; Baye's classification; Low level vision; Introduction to stereopsis, Shape from shading.

Unit- V

1 D

Optical flow; Rule based picture segmentation; development and evaluation of image algorithms.

Text Boo	Text books:								
S. No.	Title		Authors	Edition	Publisher				
			October 2020	1.00	Applicable for AY 2020-				
Chairm (AC)	nan)	Chairman (BoS)	Date of Release	Version	21 Onwards				

CO1

CO4

CO5

CO3

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)3rd Semester

1	Image Processing, Analysis and Machine Vision	Milan Sanka, Vaclav Hlavac	-	Vikas Publishing
		and Roger Boyle		
2	Digital Image Processing	Kenneth & Castleman	-	Prentice Hall India

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1	Digital Image Processing	Conzalez RC & P Wint	-	Addision Wesley
2	Digital Image Processing & Analysis	Chandra and Mazumdar	_	Prentice Hall India

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards